

Fils et câbles d'énergie - FR-N1X1G1

N° enregistrement : SERM-00009-V01.01-FR	Règles rédaction : « PCR-ed4-FR-2021 09 06 » complété par le « PSR-0001-ed4-FR-2022 11 16 »
N° d'habilitation du vérificateur : VH08	Information et référentiels : www.pep-ecopassport.org
Date d'édition : 10-2024	Durée de validité : 5 ans

Vérification indépendante de la déclaration et des données, conformément à l'ISO 14025:2010

Interne □ Externe ☑

La revue critique du PCR a été conduite par un panel d'experts présidé par Julie ORGELET (DDEMAIN)

Les PEP sont conformes aux normes NF C08-100-1 :2016 et EN 5093 : 2019 ou NF E38-500 :2022 Les éléments du présent PEP ne peuvent être comparés avec les éléments issus d'un autre programme

Document conforme à la norme ISO 14025:2006 « marquages et déclarations environnementaux. Déclarations environnementales de Type III »

INFORMATIONS GENERALES

PRODUIT DE REFERENCE

La gamme de produits faisant l'objet de la déclaration environnementale est un câble de transport d'énergie dont la référence commerciale est FR-N1X1G1-R 1X70 dont les caractéristiques techniques sont les suivantes :

Caractéristiques techniques	
Catégorie de produit	Fils et câbles d'énergie
Domaine d'application	Résidentiel/Tertiaire/Industriel hors LAN
Poids	859 kg dont 100 kg d'emballage
Résistance linéique du câble	0,268 Ohm/km
Section conducteur	70 mm ²
Durée de vie de référence	30 ans
Représentativité géographique	Fabrication en Italie ; Distribution, Installation, Utilisation et Fin de vie en France

Tableau 1 - Caractéristiques techniques du produit de référence

FAMILLE ENVIRONNEMENTALE HOMOGENE

Cette étude regroupe les produits suivants qui font partie de la famille environnementale homogène :

Produits de la famille env	ironnementale homogène
	. 1,5-25mm²
FR-N1X1G1-U 2X1,5 CCA TGL	FR-N1X1G1-R 2X6 CCA TGL
FR-N1X1G1-U 2X1,5 CCA T500	FR-N1X1G1-R 3G6 CCA TGL
FR-N1X1G1-U 3G1,5 CCA C100	FR-N1X1G1-R 3X6 CCA TGL
FR-N1X1G1-U 3G1,5 CCA C50	FR-N1X1G1-R 4G6 CCA TGL
FR-N1X1G1-U 3G1,5 CCA TGL	FR-N1X1G1-R 4X6 CCA TGL
FR-N1X1G1-U 3G1,5 CCA T500	FR-N1X1G1-R 5G6 CCA TGL
FR-N1X1G1-U 4G1,5 CCA TGL	FR-N1X1G1-R 2X10 CCA TGL
FR-N1X1G1-U 4G1,5 CCA T500	FR-N1X1G1-R 3G10 CCA TGL
FR-N1X1G1-U 5G1,5 CCA C100	FR-N1X1G1-R 3X10 CCA TGL
FR-N1X1G1-U 5G1,5 CCA TGL	FR-N1X1G1-R 4G10 CCA TGL
FR-N1X1G1-U 5G1,5 CCA T500	FR-N1X1G1-R 4X10 CCA TGL
FR-N1X1G1-U 7G1,5 CCA TGL	FR-N1X1G1-R 5G10 CCA TGL
FR-N1X1G1-U 12G1,5 CCA TGL	FR-N1X1G1-R 2X16 CCA TGL
FR-N1X1G1-U 19G1,5 CCA TGL	FR-N1X1G1-R 3X16 CCA TGL
FR-N1X1G1-U 2X2,5 CCA TGL	FR-N1X1G1-R 3G16 CCA TGL
FR-N1X1G1-U 3G2,5 CCA C100	FR-N1X1G1-R 4G16 CCA TGL
FR-N1X1G1-U 3G2,5 CCA C50	FR-N1X1G1-R 4X16 CCA TGL
FR-N1X1G1-U 3G2,5 CCA TGL	FR-N1X1G1-R 5G16 CCA TGL
FR-N1X1G1-U 3G2,5 CCA T500	FR-N1X1G1-R 1X25 CCA TGL
FR-N1X1G1-U 4G2,5 CCA TGL	FR-N1X1G1-R 1X25 CCA TGL
FR-N1X1G1-U 5G2,5 CCA TGL	FR-N1X1G1-R 2X25 CCA TGL
FR-N1X1G1-U 5G2,5 CCA T500	FR-N1X1G1-R 3X25 CCA TGL
FR-N1X1G1-U 2X4 CCA TGL	FR-N1X1G1-R 3G25 CCA TGL
FR-N1X1G1-U 3G4 CCA TGL	FR-N1X1G1-R 4G25 CCA TGL

Produits de la famille env	ironnementale homogène
FR-N1X1	G1 35mm ²
N1X1G1-R 1X35 CCA TGL	FR-N1X1G1-R 4X70 CCA TGL
FR-N1X1G1-R 2X35 CCA TGL	FR-N1X1G1-R 4G70 CCA TGL
FR-N1X1G1-R 3G35 CCA TGL	FR-N1X1G1-R 5G70 CCA TGL
FR-N1X1G1-R 4X35 CCA TGL	FR-N1X1G1-R 1X95 CCA TGL
FR-N1X1G1-R 4G35 CCA TGL	FR-N1X1G1-R 3G95 CCA TGL
FR-N1X1G1-R 5G35 CCA TGL	FR-N1X1G1-R 4X95 CCA TGL
FR-N1X1G1-R 1X50 CCA TGL	FR-N1X1G1-R 5G95 CCA TGL
FR-N1X1G1-R 3X50 CCA TGL	FR-N1X1G1-R 1X120 CCA TGL
FR-N1X1G1-R 3G50 CCA TGL	FR-N1X1G1-R 1X150 CCA TGL
FR-N1X1G1-R 4G50 CCA TGL	FR-N1X1G1-R 1X185 CCA TGL
FR-N1X1G1-R 5G50 CCA TGL	FR-N1X1G1-R 1X240 CCA TGL
FR-N1X1G1-R 1X70 CCA TGL	FR-N1X1G1-R 1X300 CCA TGL
FR-N1X1G1-R 3G70 CCA TGL	FR-N1X1G1-R 1X400 CCA TGL
FR-N1X1G1-U 4G4 CCA TGL	FR-N1X1G1-R 4X25 CCA TGL
FR-N1X1G1-U 5G4 CCA TGL	FR-N1X1G1-R 5G25 CCA TGL

Les produits N1X1G1 (2X1,5); (3G2,5); (5G25); (1X35) et (1X400) ont été utilisés pour définir les règles d'extrapolation incluses dans le présent document.

UNITE FONCTIONNELLE/ UNITE DECLAREE

L'unité fonctionnelle de cette étude est « Transporter de l'énergie exprimée pour 1 A sur une distance de 1 km pendant 30 ans et un taux d'utilisation de 70 %, conformément aux normes pertinentes » telles que définies dans le PSR-0001-ed4-EN-2022 11 16.

Ce PEP a été élaboré en considérant les paramètres suivants :

- 1 km pour les étapes de fabrication, d'installation, de distribution et de fin de vie dans les limites du système
- 1 km pour les avantages et les impacts à l'extérieur des limites du réseau (si calculé)
- 1 km et 1A pour l'étape d'utilisation.

L'impact potentiel de l'étape d'utilisation est calculé par l'utilisateur de la PEP en tenant compte de l'ampérage réel à travers le produit pendant l'utilisation en multipliant l'impact par le carré de l'intensité. Cette PEP est valable dans la plage d'intensité en tenant compte de l'intensité maximale autorisée.

L'unité déclarée est définie dans le PSR-0001-ed4-EN-2022 11 16 comme : « Un câble capable de transmettre « N » A sur une distance de 1km pendant 30 ans et un taux d'utilisation de 70 %, conformément aux normes en vigueur (mentionner les normes pertinentes ou se référer à la fiche technique du produit). »

Ainsi, afin d'obtenir les impacts liés à l'unité déclarée, il faudra multiplier les impacts de la phase d'utilisation par le carré de N (N²); avec N comme intensité de courant réelle utilisée dans le câble.

MATIERES CONSTITUTIVES

La masse totale du produit de référence (1X70) est de 859 kg dont 759 kg de produit, 100 kg de produit d'installation. Les matières constitutives sont :

	Métaux		Plastiques		Autres				
10	Cuivre	68,4 %	PVC	15,9%	Bois	11,6 %			
Matières			XLPE	4,1 %	PE-LD	< 0,1%			
lati									
2									
	Total	68,4 %	Total	20,0 %	Total	11,6 %			

Tableau 2 - Matières constitutives

METHODOLOGIE DE L'ANALYSE DU CYCLE DE VIE

L'Analyse du Cycle de Vie sur laquelle repose ce Profil Environnemental Produit (PEP) se fait en respect des critères imposés par le PCR-ed4-FR-2021 09 06 du Programme PEP ecopassport[®]. L'unité fonctionnelle et les scénarios d'utilisation et de traitement des déchets sont conformes aux hypothèses fixées dans le PSR-0001-ed4-EN-2022 11 16.

Les résultats ont été obtenus à l'aide du logiciel EIME version 6.2 et de sa base de données la plus récente.

ETAPE DE FABRICATION

Le produit a été fabriqué en Italie, ce qui implique que le modèle énergétique utilisé est :

Modèle énergétique Electricity Mix; Production mix; Low voltage; 2020; Italy, IT

ETAPE DE DISTRIBUTION

La distribution du produit emballé depuis la dernière plate-forme logistique (France) jusqu'au lieux d'installation (France) a été modélisé sur une distance de 1000km en camion de 27t (scénario de transport national du PEP-PCR-ed4-FR-2021 09 06).

Un taux de charge des camions de 85% et un taux de retour à vide de 20% a été considéré.

Source PEFCR: https://ec.europa.eu/environment/eussd/smgp/pdf/PEFCR guidance v6.3.pdf

Aucun reconditionnement n'est nécessaire pour le transport.

ETAPE D'INSTALLATION

L'installation du produit génère des emballages dont le traitement a été modélisé conformément au PCR-ed4-FR-2021 09 06:

- Une collecte des déchets sur 1 000 km
- Le traitement des déchets d'emballages a été modélisé comme mentionné dans l'annexe D de l'édition 4 de la PCR

Selon le PSR, la valeur par défaut de 5 % du produit doit être considérée comme un déchet de produit au stade de l'installation.

ETAPE D'UTILISATION

Comme le produit ne consomme pas d'énergie et ne nécessite aucun entretien pendant sa phase d'utilisation, il n'y a pas d'étape d'utilisation pour ce produit à l'exception de certaines pertes électriques dues à l'effet Joule. Ainsi, la formule présentée par le PSR-0001-ed4-EN-2022 11 16 sous la rubrique « fils et câbles d'énergie » est la suivante :

$$E = Z \cdot I^2 \cdot \Delta t \quad (J \cdot km^{-1})$$

Enfin, concernant l'unité fonctionnelle (I = 1 A), la perte d'énergie pendant la phase d'utilisation sera équivalente à E = 177 484 608,00 J. Cette énergie est liée à un mix électrique spécifique qui est :

Modèle énergétique

Electricity Mix; Production mix; Low voltage; 2020; France, FR

ETAPE DE FIN DE VIE

Pour assurer la comparabilité de la PEP, les étapes de fin de vie à prendre en compte sont les suivantes :

- Transport du site d'installation au site de traitement des déchets (1 000 km de transport par camion de 17,3 t, avec un taux de chargement de 85 % et un taux de retour à vide de 100 %),
- Une étape de broyage / séparation des métaux et des plastiques,
- Se référer à l'annexe D de l'édition PCR4 pour le traitement en fin de vie des différents matériaux.
- Le mix énergétique de la France a été utilisé dans les traitements de fin de vie tel que :

Modèle énergétique

Electricity Mix; Production mix; Low voltage; 2020; France, FR

BENEFICES ET CHARGES NET AU DELA DES FRONTIERES DU SYSTEME (MODULE D SELON EN 15804)

Les **bénéfices du recyclage des emballages en étape d'installation** [A5-C4] ont été considérés dans le Module D. Ces bénéfices ont été modélisés par les quantités de matière recyclée renseignées en installation [A5] en quantités négatives de matières vierge.

IMPACTS ENVIRONNEMENTAUX DE L'UNITE FONCTIONNELLE

Les résultats d'impacts présentés ci-dessous ont été obtenus à l'aide des méthodes définies par le PCR-ed4-FR-2021 09 06 et PSR-0001-ed4-EN-2022 11 16. L'analyse de contribution des flux élémentaires en indicateurs environnementaux relève de calculs issus du logiciel d'analyse du cycle de vie EIME v6.2. Le set d'indicateurs utilisé est le set « Indicators for PEF EF 3.1 (Compliance : PEP ed.4, EN15804+A2) » développé par le département CODDE de Bureau Veritas en conformité avec l'annexe A du PCR-ed4-FR-2021 09 06.

L'unité fonctionnelle étant la même que l'unité déclarée sauf à l'étape d'utilisation, les impacts sont identiques pour les deux unités. Afin d'obtenir les impacts liés à l'unité déclarée, il faut multiplier les impacts de la phase d'utilisation par le carré de N (N²); avec N comme intensité de courant réelle utilisée dans le câble.

IMPACTS ENVIRONNEMENTAUX DU PRODUIT DE REFERENCE A L'ECHELLE DE L'UNITE FONCTIONNELLE

Les indicateurs environnementaux calculés et déclarés dans la fiche PEP du produit à l'échelle de l'unité fonctionnelle sont :

					INDI	CATEURS C	BLIGATOIF	RES							
Indicateurs d'impacts	Unité	Fabrication	Distribution	Installation					Fin de Vie	Total (hors D)	Bénéfices et Charges				
		A1-A3	A4	A5	B1	B2	В3	B4	B5	В6	В7	B1-B7	C1-C4		D
Réchauffement climatique	kg CO2 eq	2,31E+03	5,51E+01	1,69E+02	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00	3,27E+00	0,00E+00	3,27E+00	8,15E+02	3,36E+03	-8,35E+02
Changement climatique - combustibles fossiles	kg CO2 eq	2,17E+03	5,51E+01	1,53E+02	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00	3,26E+00	0,00E+00	3,26E+00	7,43E+02	3,13E+03	-7,62E+02
Changement climatique - biogénique	kg CO2 eq	1,39E+02	0,00E+00	1,61E+01	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00	1,44E-02	0,00E+00	1,44E-02	7,24E+01	2,27E+02	-7,23E+01
Changement climatique - occupation des sols et transformation de l'occupation des sols	kg CO2 eq	1,39E-05	0,00E+00	6,05E-05	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00	1,20E-03	1,27E-03	0,00E+00
Appauvrissement de la couche d'ozone	kg CFC-11 eq	5,52E-04	8,46E-08	3,03E-05	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00	5,39E-08	0,00E+00	5,39E-08	5,27E-05	6,35E-04	-2,39E-04
Acidification	mol H+ eq	1,02E+02	3,50E-01	5,61E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00	1,74E-02	0,00E+00	1,74E-02	9,60E+00	1,17E+02	-6,01E+01
Eutrophisation	kg (PO4)³¯eq	4,19E-02	2,07E-05	1,15E-01	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00	1,47E-04	0,00E+00	1,47E-04	2,25E+00	2,41E+00	-1,08E-03

Eutrophisation aquatique marine	kg N eq	2,20E+00	1,64E-01	1,84E-01	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00	2,58E-03	0,00E+00	2,58E-03	1,20E+00	3,75E+00	-8,94E-01
Eutrophisation terrestre	mol N eq	2,60E+01	1,80E+00	2,27E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00	4,11E-02	0,00E+00	4,11E-02	1,62E+01	4,63E+01	-1,05E+01
Formation d'ozone photochimique	kg COVNM eq	1,38E+01	4,53E-01	9,18E-01	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00	7,40E-03	0,00E+00	7,40E-03	3,78E+00	1,89E+01	-6,75E+00
Epuisement des ressources abiotiques – éléments	kg Sb eq	7,95E-01	2,17E-06	4,34E-02	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00	4,45E-06	0,00E+00	4,45E-06	7,32E-02	9,12E-01	-4,95E-01
Epuisement des ressources abiotiques – combustibles fossiles	MJ	4,53E+04	7,70E+02	2,90E+03	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00	5,98E+02	0,00E+00	5,98E+02	1,12E+04	6,07E+04	-1,37E+04
Besoin en eau	m3 eq	5,27E+03	2,10E-01	3,60E+02	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00	6,74E-01	0,00E+00	6,74E-01	1,93E+03	7,56E+03	-2,94E+03

Flux d'inventaire	Unité	Fabrication	Distribution	Installation				Utilis	ation				Fin de Vie		Bénéfices et Charges
		A1-A3	A4	A5	B1	C1-C4	В3	D	B5	В6	В7	B1-B7	C1-C4	(hors D)	D
Utilisation d'énergie primaire renouvelable, à l'exclusion des ressources d'énergie primaire renouvelable utilisées comme matières premières	MJ	3,76E+03	1,03E+00	2,83E+02	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00	6,62E+01	0,00E+00	6,62E+01	1,86E+03	5,97E+03	-1,55E+03
Utilisation de ressources d'énergie primaire renouvelable comme matières premières	MJ	6,79E+01	0,00E+00	3,39E+00	0,00E+00	7,13E+01	0,00E+00								
Utilisation totale de ressources d'énergie primaire renouvelable	MJ	3,83E+03	1,03E+00	2,86E+02	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00	6,62E+01	0,00E+00	6,62E+01	1,86E+03	6,04E+03	-1,55E+03
Utilisation d'énergie primaire non renouvelable, à	MJ	4,00E+04	7,70E+02	2,64E+03	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00	5,98E+02	0,00E+00	5,98E+02	1,12E+04	5,52E+04	-1,37E+04

l'exclusion des ressources d'énergie primaire non renouvelable utilisées comme matières															
premières Utilisation de ressources		5,28E+03	0,00E+00	2,64E+02	0 00F+00	0 00F+00	0,00E+00	0 00F+00	0 00F+00	0 00F+00	0 00F+00	0.00F+00	0,00E+00	5 54F+03	0,00E+00
d'énergie primaire non renouvelable comme matières premières	МЈ	5,252 * 50	0,002.00	2,3 .2 .3	0,002	0,002	0,002	0,002	0,002	0,002	0,002702	0,002.70	0,002		0,000
Utilisation totale de ressources d'énergie primaire non renouvelables	MJ	4,53E+04	7,70E+02	2,90E+03	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00	5,98E+02	0,00E+00	5,98E+02	1,12E+04	6,07E+04	-1,37E+04
Utilisation de matières secondaires	kg	0,00E+00	0,00E+00	0,00E+00			0,00E+00						,	0,00E+00	0,00E+00
Utilisation de combustibles secondaires renouvelables	MJ	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00
Utilisation de combustibles secondaires non renouvelables	MJ	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00
Utilisation nette d'eau douce	m³	1,23E+02	4,88E-03	8,38E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00	1,59E-02	0,00E+00	1,59E-02	4,49E+01	1,76E+02	-6,85E+01
Déchets dangereux éliminés	kg	7,30E+04	0,00E+00	3,70E+03			0,00E+00						9,13E+02	7,76E+04	-4,54E+04
Déchets non dangereux éliminés	kg	1,61E+02	1,94E+00	1,88E+01	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00	7,84E-01	0,00E+00	7,84E-01	1,87E+02	3,70E+02	-6,24E+01
Déchets radioactifs éliminés	kg	1,41E-01	1,38E-03	8,01E-03	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00	1,55E-04	0,00E+00	1,55E-04	1,45E-02	1,66E-01	-6,60E-02
Composants destinés à la réutilisation	kg	0,00E+00	0,00E+00	0,00E+00			0,00E+00						0,00E+00	0,00E+00	0,00E+00
Matières destinées au recyclage	kg	4,10E+00	0,00E+00	1,78E+01	0,00E+00	3,53E+02	3,74E+02	0,00E+00							

Matières destinées à la valorisation énergétique	kg	0,00E+00					
Énergie fournie à l'extérieur	MJ	5,18E-01	0,00E+00	8,42E-01	0,00E+00	1,36E+00	0,00E+00

INDICATEURS FACULTATIFS															
Indicateurs d'impact	Unité	Fabrication	Distribution	Installation				Utilis	sation				Fin de Vie	Total	Bénéfices et Charges
		A1-A3	A4	A5	B1	B2	В3	B4	B5	В6	В7	B1-B7	C1-C4	(hors D)	D
Utilisation totale énergie	MJ	4,91E+04	7,71E+02	3,19E+03	0,00E+0	0,00E+0	0,00	0,00	0,00	6,65E+0	0,00	6,65E+0	1,31E+04	6,68E+04	-1,52E+04
primaire durant le cycle de vie	IVIJ				0	0	E+00	E+00	E+00	2	E+00	2			
Emissions do norticulos finos	Décès/Kg eq	6,15E-04	2,84E-06	3,37E-05	0,00E+0	0,00E+0	0,00	0,00	0,00	6,89E-	0,00	6,89E-	5,44E-05	7,07E-04	-3,61E-04
Emissions de particules fines	PM2.5				0	0	E+00	E+00	E+00	07	E+00	07			
Rayonnements ionisants, santé	LDa H22E oa	1,70E+05	1,34E-01	8,49E+03	0,00E+0	0,00E+0	0,00	0,00	0,00	8,02E+0	0,00	8,02E+0	1,50E+02	1,78E+05	-1,01E+05
humaine	kBq U235 eq				0	0	E+00	E+00	E+00	1	E+00	1			
Ésatavisité (sauv dauss)	CTUe	3,12E+04	3,62E+01	5,06E+03	0,00E+0	0,00E+0	0,00	0,00	0,00	9,96E+0	0,00	9,96E+0	6,94E+04	1,06E+05	-1,39E+04
Écotoxicité (eaux douces)	Cide				0	0	E+00	E+00	E+00	0	E+00	0			
Toxicité humaine, effets	CTUb	1,87E-04	9,70E-10	9,46E-06	0,00E+0	0,00E+0	0,00	0,00	0,00	6,28E-	0,00	6,28E-	2,27E-06	1,99E-04	-8,05E-06
cancérigènes	CTUh				0	0	E+00	E+00	E+00	10	E+00	10			
Toxicité humaine, effets non	CTUb	1,33E-03	1,88E-08	7,53E-05	0,00E+0	0,00E+0	0,00	0,00	0,00	2,01E-	0,00	2,01E-	1,73E-04	1,58E-03	-8,12E-04
cancérigènes	CTUh				0	0	E+00	E+00	E+00	08	E+00	08			
Impacts liés à l'occupation des	pas de	3,11E+02	0,00E+00	3,56E+02	0,00E+0	0,00E+0	0,00	0,00	0,00	1,87E-	0,00	1,87E-	6,82E+03	7,48E+03	0,00E+00
sols/qualité du sol	dimension				0	0	E+00	E+00	E+00	01	E+00	01			

Tableau 3 - Résultats des indicateurs environnementaux du flux de référence sur le cycle de vie à l'échelle de l'unité fonctionnelle

	AUTRES INDICATEURS														
Indicateurs de conception	Unité	Fabrication	Distribution	Installation				Utilis	ation				Fin de vie	Total (Off D)	Bénéfices et charges
		A1-A3	A4	A5	B1	B2	В3	B4	B5	В6	B7	B1-B7	C1-C4	B2	D
Contenu en carbone biogéniqueProduit*	Kg de C	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Contenu en carbone biogénique _Emballage*	Kg de C	1,41E+00	NA	7,00E-02	NA	NA	NA	NA	NA	NA	NA	NA	NA	1,48E+00	NA

^{*} Pour les indicateurs de teneur en carbone biogénique, le calcul a été effectué sur la base des répartitions Carton (28%), Bois (39,52%) et Papier (37,80%) fournies respectivement par l'ADEME, la norme EN16485. et APESA/RECORD selon la méthode d'évaluation -1/+1. Ces indicateurs peuvent être déclarés à zéro pour les équipements couverts par le programme qui ne sont pas concernés.

Tableau 4 - Contenu en carbone biogénique à l'échelle de l'unité fonctionnelle

COEFFICIENTS D'EXTRAPOLATION

Dans une feuille PEP valable pour une gamme de produits, un coefficient de pondération des indicateurs environnementaux est appliqué pour toutes les références d'une même gamme de produits. Les coefficients d'extrapolation sont donnés pour les impacts environnementaux à l'échelle du produit et de l'unité fonctionnelle. Pour chaque étape du cycle de vie, les impacts environnementaux du produit considéré sont calculés en multipliant les impacts du produit de référence par les coefficients d'extrapolation. Pour obtenir le total, il faut additionner les impacts environnementaux de chaque étape du cycle de vie. Dans le PSR-0001-ed4-FR-2022 11 16, aucune règle d'extrapolation n'est disponible, ce qui signifie qu'elles doivent être générées si l'on veut couvrir toute une famille homogène.

Les règles d'extrapolation ont été calculées sur la base des résultats de l'évaluation des incidences sur l'environnement de six produits : FR-N1X1G1-U 2X1,5 CCA, FR-N1X1G1-U3G2,5 CCA, FR-N1X1G1-R5G25 CCA, FR-N1X1G1-R 1X35 CCA, FR-N1X1G1-R 1X70 CCA, FR-N1X1G1-R 1X400 CCA. Pour chaque étape du cycle de vie adaptée à chaque indicateur d'impact, des coefficients d'extrapolation ont été générés et compilés dans le tableau suivant.

Les coefficients d'extrapolation sont basés sur deux types de fonctions :

- Fonction linéaire, f(X) = a*X+ b.
- Fonction polynomiale du second degré, $f(X) = a*X^2 + b*X + c$

Pour chaque étape, les règles d'extrapolation ont été calculées grâce à différents paramètres qui sont rapportés dans le tableau suivant :

Étape du cycle de vie	Paramètre X
TOTAL	Masse du produit emballé (kg/km)
Fabrication	Produit emballé en masse (kg/km)
Distribution	Produit emballé en masse (kg/km)
Installation	Masse {emballage + 5 % (produit emballé dans la masse)} (kg/km)
Utilisation	Résistance linéique en Ω/km
Fin de vie	Produit de masse (kg/km)
Bénéfices et charges au-delà du cycle de vie	Produit emballé en masse (kg/km)

Ces coefficients d'extrapolation ont été calculés grâce aux impacts des unités fonctionnelles. Afin d'obtenir les impacts liés à l'unité déclarée, il faut multiplier les impacts de la phase d'utilisation par le carré de N (N²) ; avec N comme intensité de courant réelle utilisée dans le câble.

Ces coefficients d'extrapolation ont été calculés grâce aux impacts des unités fonctionnelles.

Lorsque le coefficient c n'est pas indiqué dans le tableau suivant, cela signifie que la règle d'extrapolation suit la fonction linéaire.

Etapes du cycle de vie Indicat eurs d'impa ct		TOTAL			Fabricatio	on	Distrik	oution		Installatio	on	Utilis	ation		Fin de vi	ie		es et cha du cycle c	_
	а	b	С	а	b	С	а	b	а	b	С	а	b	а	b	С	а	b	С
GWP	9,0 8E- 05	4,08E +00	- 2,78E +02	1,6 9E- 05	2,99E +00	- 2,81E +02	6,41E- 02	0,00E +00	9,0 0E- 03	1,50E +00	- 2,41E +02	1,22E +01	0,00E +00	4,3 6E- 05	9,71E- 01	- 1,47E +01	8,91E- 04	- 2,71E +00	6,45E +02
GWP- b	1,0 0E- 05	2,74E- 01	- 2,97E +01	2,7 6E- 06	1,83E- 01	- 2,35E +01	0,00E +00	0,00E +00	7,1 9E- 04	6,90E- 02	- 9,60E +00	5,38E- 02	- 8,33E- 17	4,3 3E- 05	- 7,19E- 02	1,58E +01	7,72E- 05	- 2,35E- 01	5,59E +01
GWP-	8,0 8E- 05	3,81E +00	- 2,48E +02	1,4 1E- 05	2,81E +00	- 2,57E +02	6,41E- 02	0,00E +00	8,2 8E- 03	1,43E +00	- 2,32E +02	1,22E +01	- 7,11E- 15	4,2 6E- 04	- 7,06E- 01	1,55E +02	8,14E- 04	- 2,47E +00	5,89E +02
GWP-	1,2 1E- 10	1,37E- 06	- 1,83E- 04	1,3 2E- 12	1,50E- 08	- 2,01E- 06	0,00E +00	0,00E +00	6,3 9E- 09	- 3,43E- 07	- 3,34E- 05	0,00E +00	0,00E +00	7,1 7E- 10	- 1,19E- 06	2,61E- 04	0,00E +00	0,00E +00	0,00E +00
ODP	- 6,8 9E- 12	8,51E- 07	- 7,34E- 05	- 9,7 4E- 12	7,50E- 07	- 6,47E- 05	9,84E- 11	2,65E- 23	1,3 3E- 09	4,09E- 07	- 5,59E- 05	2,01E- 07	0,00E +00	3,0 1E- 11	- 5,00E- 08	1,10E- 05	2,55E- 10	- 7,76E- 07	1,85E- 04

АР	1,0 4E- 05	1,28E- 01	- 1,59E +01	9,1 0E- 06	1,11E- 01	- 1,45E +01	4,07E- 04	0,00E +00	5,6 1E- 04	- 2,28E- 02	- 3,67E +00	6,50E- 02	- 5,55E- 17	5,6 0E- 06	9,30E- 03	2,04E +00	6,42E- 05	- 1,95E- 01	4,65E +01
EP- fw	2,2 4E- 07	2,62E- 03	- 3,41E- 01	- 1,6 7E- 09	5,95E- 05	- 5,08E- 03	2,41E- 08	0,00E +00	1,1 9E- 05	- 5,94E- 04	- 6,72E- 02	5,49E- 04	- 6,51E- 19	1,3 5E- 06	- 2,24E- 03	4,91E- 01	1,16E- 09	- 3,51E- 06	8,37E- 04
EP-m	1,5 1E- 07	4,39E- 03	- 2,97E- 01	8,3 2E- 08	2,61E- 03	- 2,27E- 01	1,91E- 04	- 5,55E- 17	1,0 3E- 05	1,51E- 03	- 2,60E- 01	9,64E- 03	- 6,94E- 18	6,7 5E- 07	- 1,12E- 03	2,45E- 01	9,54E- 07	- 2,90E- 03	6,90E- 01
EP-t	2,0 4E- 06	5,37E- 02	- 3,48E +00	9,8 4E- 07	3,10E- 02	- 2,74E +00	2,09E- 03	- 4,44E- 16	1,3 4E- 04	1,69E- 02	- 3,10E +00	1,53E- 01	- 1,11E- 16	9,1 5E- 06	- 1,52E- 02	3,33E +00	1,12E- 05	- 3,41E- 02	8,12E +00
РОСР	1,0 8E- 06	2,18E- 02	- 2,03E +00	8,1 9E- 07	1,59E- 02	- 1,72E +00	5,27E- 04	- 3,33E- 16	6,7 4E- 05	3,20E- 03	- 1,04E +00	2,76E- 02	0,00E +00	2,1 4E- 06	- 3,55E- 03	7,78E- 01	7,21E- 06	- 2,19E- 02	5,21E +00
ADP- e	8,6 7E- 08	9,85E- 04	- 1,31E- 01	7,5 6E- 08	8,59E- 04	- 1,15E- 01	2,53E- 09	4,24E- 22	4,5 9E- 06	- 2,46E- 04	- 2,40E- 02	1,66E- 05	- 6,78E- 21	4,3 8E- 08	- 7,28E- 05	1,60E- 02	5,28E- 07	- 1,60E- 03	3,82E- 01
ADP-	3,7 4E- 03	5,70E +01	1,54E +04	- 1,2 5E- 03	6,25E +01	- 5,40E +03	8,96E- 01	0,00E +00	1,1 4E- 01	4,22E +01	- 5,52E +03	2,23E +03	- 1,82E- 12	6,3 8E- 03	- 1,06E +01	2,32E +03	1,46E- 02	- 4,43E +01	1,05E +04

WDP	4,9 7E- 04	8,71E +00	- 1,02E +03	2,8 7E- 04	6,23E +00	- 7,20E +02	2,44E- 04	- 5,55E- 17	3,1 8E- 02	9,24E- 02	3,31E +02	2,51E +00	- 1,78E- 15	1,1 5E- 03	- 1,91E +00	4,20E +02	3,14E- 03	- 9,54E +00	2,27E +03
РМ	6,5 1E- 11	7,52E- 07	- 7,29E- 05	5,3 6E- 11	6,76E- 07	- 8,69E- 05	3,31E- 09	1,69E- 21	3,3 1E- 09	- 1,18E- 07	- 2,33E- 05	2,57E- 06	1,69E- 21	3,1 5E- 11	- 5,24E- 08	1,15E- 05	3,85E- 10	- 1,17E- 06	2,79E- 04
IRP	1,5 7E- 02	1,94E +02	- 2,25E +04	1,4 3E- 02	1,88E +02	- 2,43E +04	1,56E- 04	- 2,78E- 17	8,4 5E- 01	3,19E +01	- 5,79E +03	2,99E +02	- 4,55E- 13	8,4 9E- 05	- 1,41E- 01	3,09E +01	1,08E- 01	- 3,28E +02	7,81E +04
ETP- fw	7,1 7E- 03	1,21E +02	- 1,43E +04	9,2 2E- 04	3,88E +01	- 4,10E +03	4,21E- 02	1,42E- 14	4,5 0E- 01	- 2,89E +00	- 4,50E +03	3,72E +01	0,00E +00	4,1 1E- 02	- 6,82E +01	1,50E +04	1,49E- 02	- 4,52E +01	1,08E +04
HTP- c	- 6,1 2E- 11	4,13E- 07	- 9,29E- 06	- 5,8 5E- 11	3,91E- 07	- 8,55E- 06	1,13E- 12	- 4,14E- 25	- 1,2 0E- 09	6,33E- 07	- 5,17E- 05	2,34E- 09	1,65E- 24	1,3 5E- 12	- 2,25E- 09	4,93E- 07	8,60E- 12	- 2,61E- 08	6,22E- 06
HTP- nc	1,4 7E- 10	1,72E- 06	- 2,27E- 04	1,2 4E- 10	1,45E- 06	- 1,92E- 04	2,18E- 11	6,62E- 24	7,8 7E- 09	- 4,00E- 07	- 4,34E- 05	7,49E- 08	- 5,29E- 23	1,0 3E- 10	- 1,71E- 07	3,76E- 05	8,67E- 10	- 2,63E- 06	6,27E- 04

Tableau 5 : Coefficients des règles extrapolation sur les indicateurs d'impacts

Etapes du cycle de vie Indicat eurs d'impa		TOTAL			Fabricatior	1	Distril	bution		Installatior		Utilis	ation		Fin de vie			s et charge u cycle de v	
	а	b	С	а	b	С	а	b	а	b	С	а	b	а	b	С	а	b	С
	6,11E -04	8,33E +00	- 1,05E +03	- 6,71E -05	5,77E -01	- 2,50E +01	0,00E +00	0,00E +00	3,48E -02	- 1,15E +00	- 2,56E +02	6,96E -01	4,44E -16	4,08E -03	- 6,77E +00	1,49E +03	0,00E +00	0,00E +00	0,00E +00
SQP PER E	7,35E -04	4,57E +00	1,71E +03	7,05E -05	4,78E +00	- 4,82E +02	1,20E -03	- 4,44E -16	2,08E -02	1,20E +00	- 3,43E +02	2,47E +02	0,00E +00	1,10E -03	- 1,83E +00	4,01E +02	1,66E -03	- 5,03E +00	1,20E +03
PER M	- 2,23E -06	4,16E -03	7,00E +01	- 2,13E -06	3,96E -03	6,67E +01	0,00E +00	0,00E +00	- 6,54E -05	1,92E -02	2,04E +00	0,00E +00	0,00E +00	0,00E +00	0,00E +00	0,00E +00	0,00E +00	0,00E +00	0,00E +00
PER T	7,32E -04	4,57E +00	1,78E +03	6,84E -05	4,78E +00	- 4,15E +02	1,20E -03	- 4,44E -16	2,07E -02	1,22E +00	- 3,41E +02	2,47E +02	0,00E +00	1,10E -03	- 1,83E +00	4,01E +02	1,66E -03	- 5,03E +00	1,20E +03
PEN RE	5,30E -03	4,57E +01	1,60E +04	2,26E -04	5,18E +01	- 4,83E +03	8,96E -01	0,00E +00	1,43E -01	2,58E +01	- 4,14E +03	2,23E +03	- 1,82E -12	6,38E -03	- 1,06E +01	2,32E +03	1,46E -02	- 4,43E +01	1,05E +04

PEN RM	- 1,55E -03	1,13E +01	- 5,95E +02	- 1,48E -03	1,08E +01	- 5,67E +02	0,00E +00	0,00E +00	- 2,91E -02	1,64E +01	- 1,38E +03	0,00E +00	0,00E +00	0,00E +00	0,00E +00	0,00E +00	0,00E +00	0,00E +00	0,00E +00
PEN RT	3,74E -03	5,70E +01	1,54E +04	- 1,25E -03	6,25E +01	5,40E +03	8,96E -01	0,00E +00	1,14E -01	4,22E +01	- 5,52E +03	2,23E +03	- 1,82E -12	6,38E -03	- 1,06E +01	2,32E +03	1,46E -02	- 4,43E +01	1,05E +04
PET	4,47E -03	6,16E +01	1,71E +04	- 1,19E -03	6,73E +01	5,81E +03	8,97E -01	0,00E +00	1,34E -01	4,34E +01	- 5,86E +03	2,48E +03	1,82E -12	7,48E -03	- 1,24E +01	2,72E +03	1,62E -02	- 4,93E +01	1,17E +04
SM	0,00E +00	0,00E +00	0,00E +00	0,00E +00	0,00E +00	0,00E +00	0,00E +00	0,00E +00	0,00E +00	0,00E +00	0,00E +00	0,00E +00	0,00E +00	0,00E +00	0,00E +00	0,00E +00	0,00E +00	0,00E +00	0,00E +00
RSF	0,00E +00	0,00E +00	0,00E +00	0,00E +00	0,00E +00	0,00E +00	0,00E +00	0,00E +00	0,00E +00	0,00E +00	0,00E +00	0,00E +00	0,00E +00	0,00E +00	0,00E +00	0,00E +00	0,00E +00	0,00E +00	0,00E +00
NRS F	0,00E +00	0,00E +00	0,00E +00	0,00E +00	0,00E +00	0,00E +00	0,00E +00	0,00E +00	0,00E +00	0,00E +00	0,00E +00	0,00E +00	0,00E +00	0,00E +00	0,00E +00	0,00E +00	0,00E +00	0,00E +00	0,00E +00
FW	1,16E -05	2,03E -01	- 2,38E +01	6,69E -06	1,45E -01	- 1,68E +01	5,68E -06	8,67E -19	7,40E -04	- 2,03E -03	- 7,72E +00	5,91E -02	- 2,78E -17	2,69E -05	- 4,46E -02	9,78E +00	7,31E -05	- 2,22E -01	5,29E +01

	7,29E	8,41E	-	6,94E	7,89E	-	0,00E	0,00E	3,88E	-	-	1,22E	0,00E	4,90E	-	1,78E	4,85E		3,51E
	-03	+01	1,12E +04	-03	+01	1,05E +04	+00	+00	-01	2,01E +01	2,10E +03	+00	+00	-04	8,13E -01	+02	-02	1,47E +02	+04
HW D																			
	7,52E -06	4,48E -01	- 1,55E	6,43E -06	1,96E -01	- 2,09E	2,25E -03	- 4,44E	8,87E -04	2,00E -01	- 2,87E	2,92E +00	0,00E +00	9,73E -05	- 1,61E	3,54E +01	6,66E -05	- 2,02E	4,82E +01
	00	01	+01		01	+01	03	-16	04	O1	+01	100	100	03	-01	101	03	-01	.01
NH WD																			
	1,30E -08	1,81E -04	- 1,63E	1,22E -08	1,55E -04	- 1,96E	1,61E -06	- 4,34E	7,02E -07	- 5,51E	- 6,83E	5,79E -04	- 8,67E	7,17E -09	- 1,19E	2,61E -03	7,04E -08	- 2,14E	5,10E -02
RW			-02			-02		-19		-06	-03		-19		-05			-04	
D																			
	0,00E +00																		
CRU	0.555	4.055		2 2 2 2	4 405		0.005	0.005	4 005			0.005	0.005	0.445		7.505	2 225	0.005	0.005
	3,56E -05	4,05E -01	- 5,41E	3,90E -07	4,43E -03	- 5,92E	0,00E +00	0,00E +00	1,88E -03	- 1,01E	- 9,83E	0,00E +00	0,00E +00	2,11E -04	3,50E	7,68E +01	0,00E +00	0,00E +00	0,00E +00
			+01			-01				-01	+00				-01				
MFR	0.005	0.005	0.005	0.005	0.005	0.005	0.005	0.005	0.005	0.005	0.005	0.005	0.005	0.005	0.005	0.005	0.005	0.005	0.005
	0,00E +00																		
MER		7.505	7.245	2.005	6.705		0.005	0.005		4.005	4.405	0.005	0.005	0.005	0.005	0.005	0.005	0.005	0.005
	- 2,35E	7,59E -04	7,31E -01	2,00E -09	6,78E -04	- 6,75E	0,00E +00	0,00E +00	- 1,44E	4,89E -03	4,48E -01	0,00E +00							
	-08					-02			-05										
EE																			

Tableau 6 : Coefficients des règles extrapolation sur les indicateurs de flux

Emballage / Produit	Carton	Bois	Papier
Proportion massique (kg)	Mc	Mw	Мр
Contenu en carbone biogénique (kg)	0,28*Mc	0,3952*Mw	0,378*Mp

Tableau 7 : Coefficients de la teneur en carbone biogénique

EXEMPLE APPLIQUE SUR UN CABLE INCLUS DANS LA PEP

Appliquons ces coefficients d'extrapolation à N1X1G1-R 1X400 pour 1 km de câble. Sa masse de produit emballé est de 4 070, sa masse de produit est de 4001 kg et sa masse d'emballage est de 70 kg. La résistivité linéaire associée est de $0,047~\Omega/km$.

Exemple de calcul pour le réchauffement climatique (GWP), pour le total des impacts :

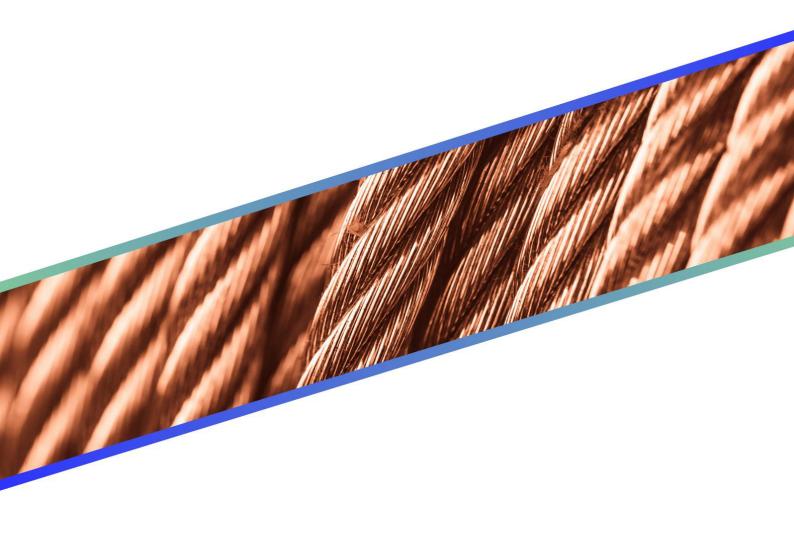
Formule utilisée : ax²+bx+c, avec :

X : Masse du produit emballé (kg/km), ici 4 071 kg; a : 9,08E-05, b : 4,08E+00, c : -2,78E+02

GWP (kg CO2 eq) = 1,78E+04

	GWP (kg CO2 eq)
	Valeurs
TOTAL	1,78E+04
Fabrication	1,22E+04
Distribution	2,61E+02
Installation	8,45E+02
Utilisation	5,74E-01
Fin de vie	4,57E+03
Bénéfices et charges au-delà du cycle de vie	4,40E+03

Tableau 8 – Calcul de l'indicateur utilisant la règle d'extrapolation


EXEMPLE DE CALCUL POUR LE CARBONE BIOGENIQUE

Exemple de calcul pour le carbone biogénique pour le bois pour le produit N1X1G1-R 1X400 :

Emballage / Produit	Carton	Bois	Papier
Proportion massique (kg)	Mc =0	Mw =2,5	Mp =0
Contenu en carbone biogénique (kg)	0,28*Mc	0,3952*Mw	0,378*Mp

Tableau 9 : Calcul des coefficients de la teneur en carbone biogénique

Teneur en carbone biogénique = 0,3952* 2,50 = 0,99 kg de C

	Dé	tenteur de la déclaration				
		SERMES				
^ cormoc		6 rue Pierre Clostermann, 67120 DACHSTEIN- FRANCE				
<u>⊗</u> sermes	TeL	+33 (0)3 88 40 72 39				
	Email	maxime-melniciuc@sermes.fr				
	Web	https://www.sermes.fr/				
	Auteu	r de l'Analyse de Cycle de Vie				
		CODDE- Département du LCIE Bureau Veritas				
		170 Rue de Chatagnon – 38430 MOIRANS - FRANCE				
(" U/(I\)	Tel	+33 (0)4 76 07 36 46				
7828	Email codde@fr.bureauveritas.com					
LCIE	Web <u>www.codde.fr</u>					